Estimation of Value at Risk and ruin probability for
diffusion processes with jumps

Begorfia Fernandez
Universidad Nacional Autonoma de México
joint work with Laurent Denis and Ana Meda

PASI, May 2010

LY [ EWRETETle CY AU TIVETE o Ee MNE T WA E stimation of Value at Risk and ruin probabilit PASI, May 2010 1/18



|
We will consider a process X that satisfies

t t Ny
X[:m+/ Usst+/ bst'i‘Z’}/Tf)/i, l('>07 (1)
0 0 =
X = sup Xu.
o<u<t

e We will obtain upper and lower bounds for
PIX{ > Z]

o We will use these bounds for estimations to Ruin
Pobabilities and VaR where

Forg=1—-«ain]0, 1], the Value at Risk VaR associated
with X} will be given by
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0 0 !

i=1

where B is a one-dimensional Brownian Motion , N is a Poisson
Process independent of B, Ty, T», ..., are the jump times for N, the
random variables Y;,i > 1 are i.i.d. and independent of the Poisson
Process and the Brownian Motion.

We assume the following hypotheses and denote them by (H):

(1) bis an integrable process.

(2) Forall t > 0, E(f 02ds) < +oc.

(3) The jumps of the compound Poisson process are non-negative,
i.e., Y1 > 0 P-a.e., and we assume that Y is not identically equal
to 0.

(4) The process (YN, v Y;, t > 0) is well-defined and integrable.
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|
Hypothesis UBi¢,

(1) We assume that the law of the jumps admits a Laplace transform
defined on | — oo, [ where c is a positive constant (or ¢ = +o00)
and we put

L(x) = E[e"], x<ec.

(2) There exists v* > 0 such that vs < ~*, P-a.s. for all s € [0, {].

(8) There exist 0 < ¢ < (¢/~*) and a constant K;(§) > 0, such that, for
all s € [0, 1],

s 62
5/ bydu + —
0 2

Let us remark that Assumption (UB)(3) is fulfilled if we replace it by the
stronger one:
(8') There exist constants b*(t) > 0, a*(t) > 0 such that,

/ To2au+ AS(L(3Y) — 1) < Ki(6) ae.  (2)
0

t s
/0 o2du < a*(t),/o budu < b*(t) P-ae.¥sc 0 1.

In this case one has, for all 0 < 6 < ¢/7%,
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The main result to get the upper estimate is:

Lemma

Assume (UB). Let$ €]0,c/v*[ be as in (3) of (UB), and let z > m.
Then,

P(X; > 2) < exp{6(m — 2) + Ki(6)}.
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Proof.

We have

P(X;>z) = P(6X;>0z)

< P ( sup Ms > exp{(z — m) — Kt(5)}> )

0<s<t

where {Ms, s > 0} is the martingale defined by
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S Ni 52 S
M = exp [ /audBquZ*y*Y,- —2/ o2 — As(L(7"5) — 1)
0 pe 0

{Ms, s > 0} is a martingale since it is the product of a continuous
martingale and a purely discontinuous one. The maximal inequality for
exponential martingales gives the result.

LYo W T Tl CYAUNTIVETE o Ee MNE T WA E stimation of Value at Risk and ruin probabilit: PASI, May 2010 7/18



Proposition

Let us assume (UB), and let

A={6€]0,c/~*[ | ¢ satisfies (UB)(3)}.
Then

% . Kt(é) Ina
< - — .
VaR.(X}) _ggL{er ; ; }

Proof. Thanks to Lemma 1.1, P(X;" > z) < « is implied by

Ki(6) Ina

m
Z>+(S 5

which yields the result.
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Hypothesis (LB):

There exist constants b.(t) < 0, a.(t) > 0, and -, € R, such that

t s
/ o2du > a.(t), / bydu > b,(t) and ~s>~, P-a.e. Vse [0,
0 0

The lower bound depends on the sign of ~., so we shall discuss each
case separately.

Lemma

Let us assume (LB), and v, < 0. Then, forallz € R andt > 0,

N;

P(X; > 2) > P(\/a.(1)|Z| + 7. Y Yi > z— m— b,(t)),
i—1
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Sketch of the proof Proof

. Since by hypothesis the compound Poisson and the Brownian motion
are independent, we use the product structure of the measure and
adopt a natural notation, a change of time and the fact that we know
the distribution of the sup of the Brownian Motion.

P(X; > z) = /Q2 PY(X; (-, wo) > 2)dP?(ws).

For fixed wp, set v = Z;V:q Yi(wz). Then we have
S

P1 (Xl‘*(v W2) > Z) > P1( Sl[JOpt] 0 Uu('v W2)dBu >Z—m-— b*(t) - ’V*V)'
seo,

As Bis a P'-Brownian motion,

S
R — /0 ou(-, w2)dB,

is a P'-continuous martingale. By the change of time property, we

know that there eX|sts a P'-Brownian motion B such-that
Estlmatlon of Value at Risk and ruin probabilit'
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For v, > 0 we can give a lower bound which is always valid. For this,
let us introduce the process

S S
YS:m+/ budu+/ O—udBu7 S>O
0 0

As v, > 0, the process X dominates Y/, so for all «,
VaR.(X;) > VaR.(Y}).

Proposition

If we assume hypotheses (LB), and ~. > 0, for all «,

VaR.(X;) > VaR.(Y;) > m+ b.(t) + va.(Dd ' (a/2).
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Now, if we make the additional hypothesis (denoted by (LB')) that
there exists a constant a*(t) such that

t
/ o2 du < & (1),
0
we can considerably improve the bounds.

Lemma

Under (LB), (LB'), and~, >0, forallze R andt > 0,

P(Xi > z) = P(va.(t)Zi —va(t) — a.(t)| 2]
Nt

+ Y Yizz—m-b(1)),
i=1

where Z; and Z, are N(0, 1) independent random variables that do not
depend on N and (Y;).
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We will assume in this section that the process X, s € [0, {] is given by

Ns

S
XS:m+bs+/ oudBy =Y vr-Yi, m=>0, (9)
0 -

where b is a constant and we assume that there exist constants a* and
~* > 0 such that

Vs e[0,1], o2 < a*, vs<7" ae. (10)

If v* =1, we have the classical risk process (see [Asm, Gra]). If the
insurer invests in a risky asset we obtain this general model, see for
example [GaGrSc]. We can apply Lemma 1.1 to estimate the ruin
probability.
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Proposition

Leto = E(Y1). Let X be as in (9), with coefficients bounded as in (10)
above. Assume in addition that a* > 0 and ¢ = oo, or that
limy_,¢/,+ L(X) = 400, and that the following safety load condition
holds:

b— \0~* > 0. (11)

Denote by §* the greatest positive root in 10, c/~*[ of

2
h(3) = — b5 + %a* +A(L(y*8) — 1) =0.

Then,
P(sup —Xs>0)<e %M
0<s<t
As a consequence, we have the following upper bound for the ruin
probability:

o*m

0 for some s in10.c0l) < e~
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The jumps have exponential law with parameter v > 0.

Corollary
Suppose (UB), (LB), and (LB') hold. Assume that for all s € [0, {],

v < vs < F, a.e., with* > 0.
Ifv. > 0 then
VaR.(X}) < lim sup VaR.(X})

v~ a=0  |Ing a0 [N«

IN

7*
v

If v, <0 then

VaR, (X . VaR, (X *
V2a,(t) < Iiminfai(t) and lim supai(’) <X
1%

a—0 \/||n04| a—0 |In a\

The geometric Brownian motion model.

Now we consider a case widely used in finance:imagine X satisfies
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Soforall t >0,
Ny

t t
Yt:lnm+/ 0'5st+/ bst"‘Z;}'/T— )/j,
0 0 =
where the processes b and 4 are defined by
BS:bs—lag,SZO

2

and .

~ = In(1 +~sY))

Bo =D =y MseT Tl
i=0
where Ty = 0 and we adopt the convention that In(1 +0)/0 =1.1f Yis
integrable, we can apply all the results of the previous sections to get
an estimate for VaR,(Y;") and hence for VaR,(X}), thanks to the

following result, whose proof is now obvious:

Proposition

Let X be as in (12). Under (GBM), for all o« €10, 1],
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